Panaxatriol saponins promotes angiogenesis and enhances cerebral perfusion after ischemic stroke in rats

نویسندگان

  • Zhen Hui
  • Du-Juan Sha
  • Su-Lei Wang
  • Chao-Sheng Li
  • Jian Qian
  • Jing-Qing Wang
  • Yang Zhao
  • Jing-Hua Zhang
  • Hong-Yu Cheng
  • Hui Yang
  • Lin-Jie Yu
  • Yun Xu
چکیده

BACKGROUND Panaxatriol saponins (PTS), an extract from the traditional Chinese herb Panax notoginseng, which has been used to treat ischemic stroke for many years in China. However, the mechanism underlying the effects of PTS remains unclear. This study aimed to determine whether PTS can protect against ischemic brain injury by promoting angiogenesis and to explore the possible mechanism by which it promotes angiogenesis. METHODS Middle cerebral artery occlusion (MCAO) was induced in rats, and neurological deficit scores and brain infarct volumes were assessed. Micro-Positron emission tomography (PET) was adopted to assess cerebral perfusion, and real-time PCR and western blotting were used to evaluate vascular growth factor and Sonic hedgehog (Shh) pathway component levels. Immunofluorescence staining was used to determine capillary densities in ischemic penumbrae. RESULTS We showed that PTS improved neurological function and reduced infarct volumes in MCAO rats. Micro-PET indicated that PTS can significantly increase 18F-fluorodeoxyglucose (18F-PDG) uptake by ischemic brain tissue and enhance cerebral perfusion after MCAO surgery. Moreover, PTS was able to increase capillary densities and enhance angiogenesis in ischemic boundary zones and up-regulate vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1) expression by activating the Shh signaling pathway. CONCLUSION These findings indicate that PTS exerts protective effects against cerebral ischemic injury by enhancing angiogenesis and improving microperfusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.

VEGF is a secreted mitogen associated with angiogenesis and is also a potent vascular permeability factor. The biological role of VEGF in the ischemic brain remains unknown. This study was undertaken to investigate whether VEGF enhances cerebral microvascular perfusion and increases blood-brain barrier (BBB) leakage in the ischemic brain. Using magnetic resonance imaging (MRI), three-dimensiona...

متن کامل

Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke.

BACKGROUND AND PURPOSE Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functiona...

متن کامل

P1: Dextran Curcumin Promotes Novel Object Recognition Memory in Rats after Ischemic Stroke

Ischemic stroke causes the depletion of energy and induces excitotoxicity and neuroinflammation in the brain that results from thrombotic blockage. Cerebral ischemia leads to many types of memory loss, including impairment of working, spatial and object recognition memoreis. Curcumin shows strong anti-oxidoinflammatory activities but it terapathics limited by its low solubility in water and cor...

متن کامل

MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF)

Objective(s): To investigate the effect of miR-103 on the angiogenesis of ischemic stroke rats via targeting vascular endothelial growth factor (VEGF) at the molecular level. Materials and Methods: Rat models had received the middle cerebral artery occlusion (MCAO) or sham operation before grouping, and cell models of oxygen-glucose deprivation (OGD) were performed. FITC-dextran, matrigel, and ...

متن کامل

Human Urinary Kallidinogenase Promotes Angiogenesis and Cerebral Perfusion in Experimental Stroke

Angiogenesisis a key restorative mechanism in response to ischemia, and pro-angiogenic therapy could be beneficial in stroke. Accumulating experimental and clinical evidence suggest that human urinary kallidinogenase (HUK) improves stroke outcome, but the underlying mechanisms are not clear. The aim of current study was to verify roles of HUK in post-ischemic angiogenesis and identify relevant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017